Hosted by Cassandra Turner http://singaporemathsource.com/curriculum/schools-in-the-news/

**Schools in the News**

If you’re new here, you may want to subscribe to my RSS feed. Thanks for visiting!

**Glastonbury** starting Math in Focus: *New Glastonbury math director brings ‘big ideas’*

**Board of Education** looks to improve student performance: *It’s Singapore Math for Greenwich School Students*

**New materials recommended for Common Core **21st Century Skills: *‘Math in Focus’ at center of course, textbook change*

**Ridgefield — Singapore Math “built to shift into the Common Core State Standards** but also introduces a new way of learning and teaching math to the students” –* New Math Program Proposed To Ridgefield School Board*

**Greenwich** says:* Goodbye Everyday Math, Hello Singapore?
*

Math in Focus is probably most aligned with the common core standards: * District adopting new math curriculum*

**Westport Schools** meet global challenges with Singapore math: *Westport schools focused on future*

**Teachers convinced that Singapore’s was a better approach**: *Goodbye flashcards, Hello Singapore*

– See more at: http://singaporemathsource.com/curriculum/schools-in-the-news/#sthash.huCoBikG.dpuf

]]>It doesn’t matter whether your child attends a highly sought-after publicschool, or a not so stellar one: Chances are the school’s math scores are declining. The provincial government has blamed teachers’ weak backgrounds in math, recognizing that students need more support, but it has not retooled the curriculum.

There is an emerging and disturbing consequence. Families that can afford it are opting in record numbers for private tutoring, while those that cannot are stuck with the status quo. The result is a de facto two-tier system, though the government has undertaken to offer a quality, accessible education to all.

The current curriculum is grounded in “discovery learning,” in which students use their own learning styles to explore math. The emphasis is on problem-solving techniques, real-world applications and greater creativity. The problem is that students don’t have the basics on which to build.

In Ontario, just 57 per cent of students met the provincial standard, down from 63 per cent in 2008-09. That’s just not good enough in a world where so many future jobs hinge on math skills. Research shows math skills correlate strongly with future income and academic success. Can anyone blame parents for looking for a way to supplement their child’s learning, when the public school system is falling so short?

Private programs, such as Kumon, an after-school math tutoring service, incorporate the kind of rote learning the public school system has veered away from. Kumon has seen a 23-per-cent enrolment increase over three years. Spirit of Math, another after-school program that uses drills to teach core math, has seen a 10- to 12-per-cent increase in enrolment year over year.

The popularity of these programs is evidence of their success. Parents whose children are lucky enough to receive extra tutoring are happy. But the government shouldn’t be. The province should offer a math curriculum that allows every child the opportunity to learn math effectively. Instead, it is letting its students continue to slip toward failure.

]]>

How do you measure Non-academic World Force Skills? Students are lacking literacy and content knowledge, but can work in groups, but where are the skills and academic knowledge? We need to do more research before we go full force with this new focus of public education.

IN Math we are moving away from basic math skills and focusing on REAL WORLD PROBLEMS… what does this really mean if you don’t have the skills to take on the real world problems??

Do we really want the students to struggle or do we want to provide them with direct instruction in math so they feel confident about this subject? Do we really want students to feel they are not smart enough to learn math?

Is this intentional… since it is a GOLDMINE for Math TUTORS and Math Tutoring Centers ( even here in Fairfield!)

Ann Marie Banfield describes the problems with the implementation of Common Core in Manchester, NH

Here’s some bad news from the world of education: Math scores are in decline across Canada. Just as kids in Poland and Portugal and other formerly disadvantaged countries are taking great leaps forward, ours are going backward. Our high schools are graduating kids who have failed to grasp the fundamentals, and our universities are full of students who are struggling to master material they should have learned in high school.

What’s gone wrong isn’t a mystery. For the past decade and more, school systems across the country have been performing a vast experiment on your children. **They have discarded “rote” learning in favour of “discovery,” a process by which students are supposed to come up with their own solutions to the mysteries of arithmetic. There’s ample evidence that this approach leaves millions of kids (to say nothing of their parents) baffled and confused, and it is being abandoned in large parts of the United States.** This has not deterred legions of Canadian education theorists and consultants from pressing on. Perhaps they’re secretly in league with Kumon and Sylvan to drum up business.

Ontario Education Minister Liz Sandals thinks she knows why scores are slipping. Most elementary school teachers have backgrounds in the liberal arts. Their acquaintance with math is sketchy at best. (Ms. Sandals, no slouch with numbers, has a masters degree in math.) And teachers’ college doesn’t give them enough grounding. “We need to deal with math so that the teachers have the same comfort level with teaching math that they do with reading and writing,” she said last week.

Actually, the problem is much deeper than that. The teachers may be clueless, but the methods they’re supposed to use are bound to fail. The curriculum has downgraded arithmetic to near-invisibility.** The “progressive” approach to instruction guarantees that many students will not master basic skills, will not understand fractions, will not learn to multiply or divide two-digit numbers on their own. After all, that’s what calculators are for!**

“Provincial curriculum guides and math textbooks have been systematically expunged of the standard algorithms,” Manitoba teacher Michael Zwaagstra, a leading education critic, told me. An algorithm is simply a rule that tells you how to do stuff. For example, how do you add 2,368 and 9,417? If you learned the standard way, you’ll stack the numbers and start adding from the right: 8+7=15, carry the 1 and so on.

That may be efficient, but it’s hopelessly uncreative. With “discovery” math, kids are encouraged to reinvent the wheel by, say, starting on the left, adding the thousands, then the hundreds, then the tens and ones, and adding them all up at the end. Then they have to write a story about how they got the answer. Needless to say, this takes a whole lot longer.

The trouble is that math is built on fundamentals. If you miss a building block, you’re likely to become progressively confused. To make things worse, the current practice of social promotion **– moving kids from grade to grade even if they’re hopelessly at sea –** guarantees that armies of youngsters whose parents can’t afford Kumon will be left in the dark. So much for equality in education.

For years, math professors at our leading universities have been telling elementary and high-school educators that their methods don’t work. But the educators and the teachers’ colleges have refused to listen. After all, what do the professors know? They’re just math geeks. They have no idea how to teach children. As a consequence, there is now an almost total disconnect between the math that’s taught in most schools and the math that students need in university or the real world in order to succeed. It’s notable that educators in Eastern Europe and Asia, in particular, are astounded by what they’ve seen happening in North America.

So maybe those sinking test scores are a good thing. The education establishment may be immune to public pressure, but politicians are not. In Manitoba, where math professors and parents have been up in arms, the government has announced a bold new policy – it’s bringing back arithmetic! “Let’s face it,” Education Minister Nancy Allan told the Winnipeg Free Press, “doing math in your head is important.”

As for parents who don’t live in Manitoba, not all is lost. You can lobby, too. You can look up the Khan Academy on YouTube, which offers very good instructional videos for free. Or there’s Kumon and its ilk. Wouldn’t it be nice if our schools could put them out of business?

The Globe and Mail

Published

Last updated

http://www.theglobeandmail.com/commentary/whos-failing-math-the-system/article14112165/

]]>My students come to me for math tutoring because they continue to flounder with the “new math” curriculum. For a complete description of what is being taught and how it feels for students, see **Part I** of this series. **Part I – The New Math: Why We Have It**

**If expert mathematicians have redesigned the curriculum, why aren’t the results better?**

I believe it’s because the experts aren’t taking into account the developmental stages of most students, and because they really aren’t aware of the problems most classroom teachers are faced with.

The new math teaching methods are mainly designed to create:

1.) *the ability to work in cross-disciplinary teams;*

2.) * understanding* (now viewed as even more important than being able to compute); and

3.) * innovative and divergent math thinkers*–the three characteristics increasingly required of white-collar jobs in industry today.

Yet the new math curriculum is failing to achieve these goals. Let’s take a look at WHY, by seeing how these things actually play out in most classrooms.

**How These Three Goals Actually Work Out in Classrooms**:

1.** Creating an ability to work in cross-disciplinary teams**. The idea is clearly that “putting students in groups to solve problems” will create this ability. However, there are TWO IMPORTANT REASONS why this is not happening in most classrooms. The first reason is BULLYING, and the second reason is STUDENT ATTITUDE and LACK OF MATURITY.

Middle-school, when most students are first put into math-solution groups, is the age of the MOST EXTREME BULLYING (although bullying starts in Kindergarten). Students are usually left to sort themselves into groups, and usually, in-crowd friends choose each other, while the remaining students are randomly forced into groups with students who regularly bully them. This same situation continues in many high-school classes, and is sometimes worst of all in the smallest schools where there is only one math class per grade.

**It takes an extremely effective teacher who can give groups precise tasks, direction, and rewards based on individual effort to get a group to make effective progress. Generally what happens is one of several things. The students don’t understand what they are doing at all and therefore have no idea (or motivation) even to try. They end up wasting time and talking about non-math-related matters. Or, at best, one or two students do understand and do the work, while the others loaf and do nothing, but coast on the group grade (if there is one), having not done the work, and not understanding the work that was done by the others. Or, those who are friends in the group use the hour as a social time, while the unwanted group members spend the time staring at their papers, feeling excluded, and just wasting the whole hour.**

**Requirements for effective group work are:** 1.) being in a group with others you like or respect, and others who like or respect you; 2.) Having enough background in the subject, that when given A SPECIFIC TASK, all the individuals in the group can work on it; 3.) Being able to effectively subdivide tasks; and 4.) Having individual accountability for one’s contributions to the group. Most teachers do not have either sufficient time or experience to be effective in all these ways and rely on immature students who are not willing/able to these things themselves (as an adult work group would be able to do).

**SOUNDS SO FAMILIAR CPM in Fairfield, CT!!!!!!!**

2. **Creating understanding of WHY methods work, rather than merely learning computational solutions**. This is an admirable goal, but it is not being correctly implemented at the proper ages, in the proper stages, or in the proper ways.

Mental maturity, and ability to deal with abstract concepts arrives at different times for different students. Abstract thinking arrives for a very few students in the lower elementary grades, for a few more students in the upper elementary grades, for about half of students by middle school, and for at best two-thirds of students by high school and early adulthood. For some people, it never arrives at all. Having taught a great variety of math topics over the years, some students grasp one topic at a young age, but don’t grasp another until many years later, if at all. Since every student has a unique profile of what they grasp or don’t grasp, this is the origin of the “spiral curriculum,” where each year, many topics are introduced, and each year, the math texts cut slightly deeper into each topic (assuming the school is still using math texts).

Let us take telling time as an example. A few students are able to grasp telling time well in kindergarten, while others, no matter HOW much time is spent in the classroom in grades two and three, just cannot grasp it until fifth grade. Then suddenly, something “clicks.” Their brain has arrived at the right level of mental maturity.

Unfortunately, today’s curriculum introduces so many topics that few are actually mastered. Thus, many students move up through the grades NEITHER understanding, NOR being proficient in calculating. Most students need and WANT to become proficient at calculating and getting the right answer in the elementary grades. This builds their confidence. They also want to know in what situations they might use those skills (which gives learners motivation, and is often an area neglected by teachers). Those who do not become proficient at calculating lose confidence in themselves and are certainly even LESS likely to be open to any discussions of “understanding.”

A current controversial topic in the math field is whether students need a certain amount of proficiency before they can understand “why” things work. After two decades of experience teaching math at the elementary and middle-school levels, I come down hard on the side that it IS necessary. Young elementary students can appreciate that a correct answer can be found through several different methods, but it is a waste of precious class time AT THAT AGE to spend a lot of time on WHY (an abstract concept which despite the weeks spent on it does not actually increase their understanding) instead of on developing proficiency and thereby building students’ confidence and excitement about learning more.

It was not the intent of the math experts, I am sure, in revising math curriculum, to have students wind up being neither able to understand, NOR be able to calculate! Their intent was to WIDEN the curriculum to INCLUDE more understanding. But with only four-to-five hours a week (at best) of classroom time to teach math per week, at least half of the available time is being taken up with “understanding” (which is not being understood by the majority of students), and not enough time for most students to become proficient at calculating. Those who do become proficient are generally having additional support from parents and tutors. Furthermore, homework has been greatly reduced from a decade ago (approximately cut in half) which means that more students than ever before are not mastering basic procedures. When students get into middle school and one-third of them still cannot determine the answer to 3 x 8 without consulting their calculators, it is highly unlikely they will gain any “higher understanding.”

3. C**reating innovative and divergent math thinkers**. Criticisms of the past were that students were memorizing times tables and learning to calculate, but not understanding what those calculations meant; students were unable to take even a simple story problem and know which calculations to perform.

After two decades in the classroom, I can easily see this problem did not stem from memorizing or calculating. This problem stemmed from teachers throughout school not teaching children how to TRANSLATE between English words, and math language. In most cases, elementary teachers are not math majors. In fact, most became elementary teachers because they are math-phobic! They teach the calculations, and generally skip all the story problems (as did I when I first began to teach math). Yes, it is partly a time problem, but the REAL problem is that most teachers are afraid they will not be able to explain to students how to do story problems, because they never learned themselves! Speaking as someone who did not learn this skill myself until I was an adult, I see that this is the number one area that students need the MOST help with. I find myself wondering if students in India, China, and Japan are getting this sort of help from a young age, while students in the West are not?

Rather than wasting precious elementary time on esoteric math subjects, and making “arrays” for WEEKS in order to “understand” multiplication, students would be much better served learning to calculate, and having DAILY GUIDED PRACTICE on particular types of story problems, both in order to recognize types of problems, and to be able to readily understand how to translate the English language into MATH language.

What the math “experts” who design curriculum are not realizing is that showing students all the different possible ways to solve every type of math problem does NOT create the “divergent” innovative thinkers they are looking for. As for math majors, sometimes (not always), those who were brilliant in math are unable to explain it clearly to those who are having trouble, because the teachers never experienced those same troubles themselves. Sometimes (not always) teachers who were not good math students are able to master math, and are far better at figuring out where and why students are “stuck.” Lucky children with difficulties have those teachers! The very first requirement for becoming a divergent thinker is self-confidence in one’s own abilities. This comes from being sure that one knows at least ONE way to get the right answer every time, even if one knows that other ways do exist. The main thing is to MASTER at least one method.

Beyond competence, creating divergent thinkers is more of a personality-trait question. This question has more to do with motivation and stimulating interest, and comes from the sort of child who always asks, “Why?” Most children don’t ask why, and most don’t care about why. To create more innovative, divergent thinkers, every teacher in every classroom, in every subject, needs to challenge ideas and get students excited about learning. And yes, teachers need to be “entertaining,” too! Innovative thinkers aren’t usually innovative in just one area (such as math). Most innovative thinkers draw their ideas from multiple sources and synthesis of ideas from multiple disciplines. Students need help becoming competent, and beyond that, to be inspired enough to pursue their own interests in a self-directed way. Curriculum which forces students to calculate by many different methods fatigues many students and actually de-motivates them from further self-directed learning.

It is difficult for a new or average teacher to overcome these difficulties. Hopefully with time and experience, Western society will adjust to the new math curriculum, but I am afraid it will be later, rather than sooner.

**–Lynne Diligent**

** “PLEASE, can you help me, Mrs. D.? We are having a math test TOMORROW and I don’t understand anything!” ** This has been the most common complaint I have from my sixth- and seventh-grade tutoring students (ages 11-13). Whether the topic involves geometry, equations, story problems, or even more basic calculations, nearly all my students (excellent students, too) are having the same dilemma.

If you are a parent or educator who has wondering for years (as I have) WHY we HAVE the new math, this post will explain it clearly. (**Part II** explains why the new math is not working in many schools.)

** ****The New Math Style**

The new math style in some schools appears to be, *“The teacher doesn’t explain—he or she merely facilitates ‘groups’ while students (hopefully) just teach themselves.”* Like many people, I have felt confused for several years about the new style of math teaching. Instead of presenting a lesson, giving students guided practice, and then sending them home to do independent practice (homework), the new style, which my tutoring students are experiencing, seems to be, *“Don’t follow a text book (even if they are available). Instead, just find some seemingly random problems off the internet (seemingly without any overall coherent plan of units), tell students to put themselves into groups, and pass out the photocopies. Tell the students, ‘See if you can find some solutions to these problems. Do this for three or four days, then tell students, “We will be having a test on Friday.’ “*

Imagine middle-school students with these feelings being asked to get into groups and work on random problems. It is not likely to go well. ( similar story to Fairfield students and CPM)

Of course parents’ reaction to this is panic. Eighty percent of the children are LOST with this approach. Those who can afford it are rushing to math tutors, who teach the children by traditional methods what they should have learned in school. Those who cannot afford it have children who fail.

Let us look at a “hammer” analogy. Instead of saying, *“Let’s learn how to use a hammer and see if we can get a good result with the nail pounded in correctly,”* the new approach effectively asks,*“Let’s learn why the hammer was developed, and how and why it works in theory….but don’t waste your time becoming competent in using one!”*

Next, students are given a national or state test consisting of pounding nails into a board, which of course they FAIL! Meanwhile, the “experts” lament that they are unable to do it!

This is exactly what has happened with math education. Teachers using “traditional” methods have been drummed out of education (mostly retired), while younger teachers have all been trained to use the “new” methods.

**WHERE did this approach ever come from?**

I finally found the answer I’d been searching for, in a *MOOC* (FREEonline course offered through **Coursera**, taught by world-renowned British mathematician **Keith Devlin** of Stanford University, Fall 2013, called *Introduction to Mathematical Thinking.*)

Keith Devlin

Devlin explains that in the job market, there is a need for two types of mathematical skills. He describes Type 1 skills as being able to solve math problems that are already formulated, and it’s just a matter of calculating the correct answers.

Type 2 skills involve being able to “take a new problem, say in manufacturing, identify and describe key features problem mathematically, and use that mathematical description to analyze the problem in a precise fashion.”

“In the past,” Devlin says, “there was a huge demand for employees with Type 1 skills, and a small need for Type 2 talent.” In the past, education produced many Type 1 employees and a few Type 2 employees. However, in today’s world, the need for Type 2 thinkers has greatly expanded. Not only do scientists, engineers, and computer scientists need to think this way, but new business managers also need to, in order to be able to understand and communicate with math experts and make decisions based upon properly understanding those experts. **So the “new math” curriculum is an attempt by the “experts” to produce many more Type 2 thinkers; yet, it is FAILING to do so.**

Prior to the late 1800s, math was viewed as “a collection of procedures for solving problems.” In the late 1800s a revolution occurred among mathematicians which shifted the emphasis from calculation to understanding. The new math of the 1960s was the first attempt to put this shift into the classroom, and the results were not successful. I see the current shifts to put new math into the classroom as the second attempt, which is different from the 1960s attempt (children are not studying various bases these days), yet no more successful in reality. ** Part II** of this series will explain the three reasons WHY this is happening.

** –Lynne Diligent http://expattutor.wordpress.com/2013/09/05/the-new-math-part-i-why-we-have-it/**

**The New Math: Part II – Why It’s NOT Working in So Many Schools**