*Education Next *talks with Ze’ev Wurman and W. Stephen Wilson

**EN: Will the Common Core put an end to what has sometimes been termed the “math wars”? In your view, do the math standards resemble those recommended by the National Council of Teachers of Mathematics (NCTM), and what do you make of that similarity (or lack thereof)?**

**WSW: **The end of the math wars! You must be joking.

There will always be people who think that calculators work just fine and there is no need to teach much arithmetic, thus making career decisions for 4th graders that the students should make for themselves in college. Downplaying the development of pencil and paper number sense might work for future shoppers, but doesn’t work for students headed for Science, Technology, Engineering, and Mathematics (STEM) fields.

There will always be the anti-memorization crowd who think that learning the multiplication facts to the point of instant recall is bad for a student, perhaps believing that it means students can no longer understand them. Of course this permanently slows students down, plus it requires students to think about 3rd-grade mathematics when they are trying to solve a college-level problem.

There will always be the standard algorithm deniers, the first line of defense for those who are anti-standard algorithms being just deny they exist. Some seem to believe it is easier to teach “high-level critical thinking” than it is to teach the standard algorithms with understanding. The standard algorithms for adding, subtracting, multiplying, and dividing whole numbers are the only rich, powerful, beautiful theorems you can teach elementary school kids, and to deny kids these theorems is to leave kids unprepared. Avoiding hard mathematics with young students does not prepare them for hard mathematics when they are older.

There will always be people who believe that you do not understand mathematics if you cannot write a coherent essay about how you solved a problem, thus driving future STEM students away from mathematics at an early age. A fairness doctrine would require English language arts (ELA) students to write essays about the standard algorithms, thus also driving students away from ELA at an early age. The ability to communicate is NOT essential to understanding mathematics.

There will always be people who think that you must be able to solve problems in multiple ways. This is probably similar to thinking that it is important to teach creativity in mathematics in elementary school, as if such a thing were possible. Forget creativity; the truly rare student is the one who can solve straightforward problems in a straightforward way.

There will always be people who think that statistics and probability are more important than arithmetic and algebra, despite the fact that you can’t do statistics and probability without arithmetic and algebra and that you will never see a question about statistics or probability on a college placement exam, thus making statistics and probability irrelevant for college preparation.

There will always be people who think that teaching kids to “think like a mathematician,” whether they have met a mathematician or not, can be done independently of content. At present, it seems that the majority of people in power think the three pages of Mathematical Practices in Common Core, which they sometimes think is the “real” mathematics, are more important than the 75 pages of content standards, which they sometimes refer to as the “rote” mathematics. They are wrong. You learn Mathematical Practices just like the name implies; you practice mathematics with content.

There will always be people who think that teaching kids about geometric slides, flips, and turns is just as important as teaching them arithmetic. It isn’t. Ask any college math teacher.

The end of the math wars! You must be joking.

**ZW: **Math wars erupted as a result of the unfocused and mostly math-less 1989 NCTM standards. NCTM rewrote those terrible standards in 2000, yet much of what mathematicians found objectionable remained in place. Only in 2005, with the publication in *Notices of the AMS [American Mathematical Society] *of “Reaching for Common Ground in K–12 Mathematics Education,” did the two sides make a serious attempt to bridge the chasm. NCTM followed shortly with its *2006 Curriculum Focal Points,* a document that finally focused on what mathematics is all about: mathematics. Since then, NCTM seems to have regressed, as evidenced by its 2009 publication *Focus in High School Mathematics, *a document that is full of high-minded prose yet contains little rigor or specificity.

The Common Core mathematics standards are grade-by-grade‒specific and hence are more detailed than the NCTM 2000 standards, but they do resemble them in setting their sights lower than our international competitors, by, for example, locking algebra into the high school curriculum.

And they contain inexplicable holes even when compared to the much shorter NCTM *Curriculum Focal Points,*the major one being the absence of fraction conversion among their multiple representations (simple, decimal, percent). Other puzzling omissions include geometry basics such as derivation of area of general triangles or the concept of pi. One can argue those can be inferred, but the same can be said regarding all those state standards we acknowledge as “bad”—that all those missing pieces “can be inferred.”

What to make of such obvious deficiencies and omissions? Unfortunately, the main authors of the Common Core mathematics standards had minimal prior experience with writing standards, and it shows. While they may have had a long and distinguished list of advisers, they did not seem to have sufficient experience to select the wheat from the chaff. How, otherwise, can one explain their selecting an experimental approach to geometry, teaching it on the basis of rigid motions, that has not been successfully tried anywhere in the world? Simple prudence and an ounce of experience would tell them either to stick to what is known to work or to recommend a trial phase before foisting it sight-unseen on a nation of 300 million.

A committee wrote them. Worse, the committee was hired by the very states whose standards would be replaced, so states got first crack at suggesting “corrections” to the standards. There is much to criticize about them, and there are several sets of standards, including those in California, the District of Columbia, Florida, Indiana, and Washington, that are clearly better. Yet Common Core is vastly superior—not just a little bit better, but vastly superior—to the standards in more than 30 states.

Fewer than 15 states are explicit about the need for students to know the single-digit number facts (think multiplication tables) to the point of instant recall. States love to have kids figure out many ways to add, subtract, multiply, and divide, but often leave off the capstone standard of fluency with the standard algorithms (traditional step-by-step procedures for the addition, subtraction, multiplication, and division of whole numbers). For example, only seven states expect students to know explicitly the standard algorithm for whole number multiplication. Fractions are even harder to find done well. Standards for fractions are generally so vague that nearly everything is left to the reader. Often states expect students to develop their own strategies or a variety of strategies for dealing with fractions. For example, only 15 states mention common denominators. Common Core does a pretty good job with arithmetic, even a very good job with fractions.

http://educationnext.org/the-common-core-math-standards/

http://www.cmu.edu/homepage/society/2012/summer/math-success.shtml – look her to learn more about US students’ inadequate knowledge of fractions and division

http://educationnext.org/files/ednext_20123_forum_figure.jpg

## Recent Comments